Hello, I'm Yunwen, a computational chemist by training.
I studied under Prof. Dieter Cremer (deceased) and Prof. Elfi Kraka, then received my doctoral degree in theoretical chemistry at Southern Methodist University in 2018.
My current research interests emphasize alchemical free energy calculation and machine learning in computational chemistry.
My prior research covers multiple areas including chemical bonding, vibrational spectroscopy, chemical similarity, reaction mechanism, curvilinear coordinates and materials chemistry.
I enjoy developing new theories and tools in the field of computational chemistry. I'm familiar with Python, Fortran 77/90, and C++/CUDA languages.
I would be glad to review manuscripts related to my expertise for international journals and conferences.
[Google Scholar Profile] [GitHub]
[Email: ]
[1] G. Luo, H. Zhang, Y. Tao, Q. Wu, D. Tian, Q. Zhang, Recent Progress in Ligand-Centered Homogeneous Electrocatalysts for Hydrogen Evolution Reaction, Inorg. Chem. Front. 6, 343 (2019).
[2] E. Kraka, W. Zou, Y. Tao, Decoding Chemical Information From Vibrational Spectroscopy Data – Local Vibrational Mode Theory, WIREs: Comput. Mol. Sci. 10, e1480 (2020).
[1] Y. Tao, C. Tian, N. Verma, W. Zou, C. Wang, D. Cremer, E. Kraka, Recovering Intrinsic Fragmental Vibrations Using the Generalized Subsystem Vibrational Analysis, J. Chem. Theory Comput. 14, 2558 (2018).
[2] Y. Tao, W. Zou, D. Sethio, N. Verma, Y. Qiu, C. Tian, D. Cremer, E. Kraka, In Situ Measure of Intrinsic Bond Strength in Crystalline Structures: Local Vibrational Mode Theory for Periodic Systems, J. Chem. Theory Comput. 15, 1761 (2019).
[3] Y. Tao, W. Zou, S. Nanayakkara, E. Kraka, PyVibMS: A PyMOL Plugin for Visualizing Vibrations in Molecules and Solids, J. Mol. Model. 26, 290 (2020).
[4] Y. Tao, W. Zou, S. Nanayakkara, M. Freindorf, E. Kraka, A Revised Formulation of the Generalized Subsystem Vibrational Analysis (GSVA), Theor. Chem. Acc. 140, 31 (2021).
[5] Y. Tao*, W. Zou, S. Nanayakkara, E. Kraka*, LModeA-nano: A PyMOL Plugin for Calculating Bond Strength in Solids, Surfaces, and Molecules via Local Vibrational Mode Analysis, J. Chem. Theory Comput. 18, 1821 (2022).
[1] C. Guo, Y. Chen, Y. Zheng, W. Zhang, Y. Tao, J. Feng, L. Tang, Exploring the Enatioselective Mechanism of Halohydrin Dehalogenase from Agrobacterium radiobacter AD1 by Iterative Saturation Mutagenesis, Appl. Environ. Microbiol. 81, 2919 (2015).
[2] Z. Tang, D. Li, Y. Luan, L. Zhu, H. Du, Y. Tao, Y. Wang, D. M. Haddleton, H. Chen, Conjugation of Polymers to Proteins Through an Inhibitor-Derived Peptide: Taking up the Inhibitor Berth, Chem. Commun. 51, 10099 (2015).
[3] S. Jain1, Y. Tao1, T. Schlick, Inverse Folding with RNA-As-Graphs Produces a Large Pool of Candidate Sequences with Target Topologies, J. Struct. Biol. 209, 107438 (2020).
[4] K. Nam, Y. Tao, V. Ovchinnikov, Molecular Simulations of Conformational Transitions within the Insulin Receptor Kinase Reveal Consensus Features in a Multistep Activation Pathway, J. Phys. Chem. B 127, 5789 (2023).
[1] Y. Tao, W. Zou, J. Jia, W. Li, D. Cremer, Different Ways of Hydrogen Bonding in Water – Why Does Warm Water Freeze Faster than Cold Water?, J. Chem. Theory Comput. 13, 55 (2017).
[2] Y. Tao, W. Zou, E. Kraka, Strengthening of Hydrogen Bonding with the Push-Pull Effect, Chem. Phys. Lett. 685, 251 (2017).
[4] N. Verma, Y. Tao, E. Kraka, Systematic Detection and Characterization of Hydrogen Bonding in Proteins via Local Vibrational Modes, J. Phys. Chem. B 125, 2551 (2021).
[5] S. Nanayakkara1, Y. Tao1, E. Kraka, Capturing Individual Hydrogen Bond Strengths in Ices via Periodic Local Vibrational Mode Theory: Beyond the Lattice Energy Picture, J. Chem. Theory Comput. 18, 562 (2022).
[1] Y. Tao, W. Zou, D. Cremer, E. Kraka, Characterizing Chemical Similarity with Vibrational Spectroscopy: New Insights into the Substituent Effects in Monosubstituted Benzenes, J. Phys. Chem. A 121, 8086 (2017).
[2] Y. Tao, W. Zou, D. Cremer, E. Kraka, Correlating the Vibrational Spectra of Structurally Related Molecules: A Spectroscopic Measure of Similarity, J. Comput. Chem. 39, 293 (2018).
[3] N. Verma1, Y. Tao1, B. L. Marcial, E. Kraka, Correlation Between Molecular Acidity (pKa) and Vibrational Spectroscopy, J. Mol. Model. 25, 48 (2019).
[4] L. Huang, L. Wang, X. Hu, S. Chen, Y. Tao, H. Su, J. Yang, W. Xu, V. Vedarethinam, S. Wu, B. Liu, X. Wan, J. Lou, Q. Wang, K. Qian, Machine Learning of Serum Metabolic Patterns Encodes Early-Stage Lung Adenocarcinoma, Nat. Commun. 11, 3556 (2020).
[5] N. Verma, X. Qu, F. Trozzi, M. Elsaied, N. Karki, Y. Tao, B. Zoltowski, E. Larson, E. Kraka, SSnet: A Deep Learning Approach for Protein-Ligand Interaction Prediction, Int. J. Mol. Sci. 22, 1392 (2021).
[1] Z. Pan1, Y. Tao1, Q. He1, Q. Wu, L. Chen, Z. Wei, J. Wu, J. Lin, D. Sun, Q. Zhang, D. Tian, G. Luo, The Difference Se Makes: A Bio-Inspired Dppf-Supported Nickel Selenolate Complex Boosts Dihydrogen Evolution with High Oxygen Tolerance, Chem. Eur. J. 24, 8275 (2018).
[3] A. Xie, Y. Tao*, C. Peng, G. Luo*, A Nickel Pyridine-Selenolate Complex for the Photocatalytic Evolution of Hydrogen from Aqueous Solutions, Inorg. Chem. Commun. 110, 107598 (2019).
[4] W. Xiao, Y. Tao*, G. Luo*, Hydrogen Formation Using A Synthetic Heavier Main-Group Bismuth-Based Electrocatalyst, Int. J. Hydrog. Energy 45, 8177 (2020).
[5] W. Xiao, Y. Tao, Y. Zhao, J. Luo, W. Lai, Synthesis, Crystal Structure and Photochemical H2 Generation of A Co-Based Supramolecular Assembly Containing A Bisthienyl Bodipy Sensitizer, Inorg. Chem. Commun. 113, 107800 (2020).
[1] Y. Tao, Y. Qiu, W. Zou, S. Nanayakkara, S. Yannacone, E. Kraka, In Situ Assessment of Intrinsic Strength of X-I⋯OA-Type Halogen Bonds in Molecular Crystals with Periodic Local Vibrational Mode Theory, Molecules 25, 1589 (2020).
[2] Z. Zhang, Y. Tao, H. Tian, Q. Yue, S. Liu, Y. Liu, X. Li, Y. Lu, Z. Sun, E. Kraka, S. Liu, Chelation-Assisted Selective Etching Construction of Hierarchical Polyoxometalate-Based Metal-Organic Framework, Chem. Mater. 32, 5550 (2020).
[3] C. A. McConville, Y. Tao, H. A. Evans, B. A. Trump, J. B. Lefton, W. Xu, A. A. Yakovenko, E. Kraka, C. M. Brown, T. Runčevski, Peritectic Phase Transition of Benzene and Acetonitrile Into a Cocrystal Relevant to Titan, Saturn's Moon, Chem. Commun. 56, 13520 (2020).
[4] M. Huang, R. Qiu, Z. Pan, D. Tian, Y. Tao*, J. Lin*, G. Luo*, Thermally Triggered Isomerization in a Naphthalene-Based Acylhydrazone with Solid-State Optical Nonlinearity Response, Eur. J. Inorg. Chem. 2020, 4313 (2020).
[1] W. Zou1, Y. Tao1, E. Kraka, Describing Polytopal Rearrangements of Fluxional Molecules with Curvilinear Coordinates Derived from Normal Vibrational Modes: A Conceptual Extension of Cremer-Pople Puckering Coordinates, J. Chem. Theory Comput. 16, 3162 (2020).
[2] W. Zou, Y. Tao, E. Kraka, Systematic Description of Molecular Deformations with Cremer–Pople Puckering and Deformation Coordinates Utilizing Analytic Derivatives: Applied to Cycloheptane, Cyclooctane, and Cyclo[18]carbon, J. Chem. Phys. 152, 154107 (2020).
[3] Y. Tao, W. Zou, G. Luo, E. Kraka, Describing Polytopal Rearrangement Processes of Octacoordinate Structures. I. Renewed Insights into Fluxionality of the Rhenium Polyhydride Complex ReH5(PPh3)2(Pyridine), Inorg. Chem. 60, 2492 (2021).
[4] Y. Tao*, X. Wang*, W. Zou, G. Luo, E. Kraka*, Unusual Intramolecular Motion of ReH92- in K2ReH9 Crystal: Circle Dance and Three-Arm Turnstile Mechanisms Revealed by Computational Studies, Inorg. Chem. 61, 1041 (2022).
[1] H. Cui, J. Zhang, Y. Tao, C. Cui, Controlled Oxidation of an NHC-Stabilized Phosphinoaminosilylene with Dioxygen, Inorg. Chem. 55, 46 (2016).
[2] M. Freindorf, Y. Tao, D. Sethio, D. Cremer, E. Kraka, New Mechanistic Insights into the Claisen Rearrangement of Chorismate — A Unified Reaction Valley Approach Study, Mol. Phys. 117, 1172 (2019).
[3] S. Nanayakkara, M. Freindorf, Y. Tao, E. Kraka, Modeling Hydrogen Release from Water with Borane and Alane Catalysts: A Unified Reaction Valley Approach, J. Phys. Chem. A 124, 8978 (2020).
[4] M. Z. Makoś, M. Freindorf, Y. Tao, E. Kraka, Theoretical Insights into [NHC]Au(I) Catalyzed Hydroalkoxylation of Allenes: A Unified Reaction Valley Approach Study, J. Org. Chem. 86, 5714 (2021).
[5] M. Freindorf, N. Beiranvand, A. Delgado, Y. Tao, E. Kraka, On the formation of CN bonds in Titan's Atmosphere—A Unified Reaction Valley Approach Study, J. Mol. Model. 27, 320 (2021).
[6] X. Liang, F. Guan, Z. Ling, H. Wang, Y. Tao, E. Kraka, H. Huang, C. Yu, D. Li, J. He, H. Fang, Pivotal Role of Water Molecules in the Photodegradation of Pymetrozine: New Insights for Developing Green Pesticides, J. Hazard. Mater. 423, 127197 (2022).
[7] M. Freindorf, Y. Tao, E. Kraka, A Closer Look at the Isomerization of 5-Androstene-3,17-Dione to 4-Androstene-3,17-Dione in Ketosteroid Isomerase, J. Comput. Biophys. Chem. 21, 313 (2022).
[1] W. Xiao, A. Xie, Y. Tao*, G. Luo*, Synthesis, Crystal Structure, DFT Analysis and Properties of A Sub-Nanometer Sized Hexanuclear Silver(I) Cluster, J. Mol. Struct. 1207, 127789 (2020).
[2] C. Deng, C. Sun, Z. Wang, Y. Tao, Y. Chen, J. Lin, G. Luo, B. Lin, D. Sun, L. Zheng, A Sodalite-Type Silver Orthophosphate Cluster in a Globular Silver Nanocluster, Angew. Chem. Int. Ed. 59, 12659 (2020).
[3] Q. Guo, B. Han, C. Sun, Z. Wang, Y. Tao*, J. Lin, G. Luo*, C. Tung, D. Sun*, Observation of a bcc-like Framework in Polyhydrido Copper Nanoclusters, Nanoscale 13, 19642 (2021).
[4] G. Dong, Z. Pan, B. Han, Y. Tao, X. Chen, G. Luo, P. Sun, C. Sun, D. Sun, Multi-layer 3D Chirality and Double-Helical Assembly in a Copper Nanocluster with a Triple-Helical Cu15 Core, Angew. Chem. Int. Ed. 62, e202302595 (2023).
[5] G. Luo, Z. Pan, B. Han, D. Dong, C. Deng, M. Azam, Y. Tao, J. He, C. Sun, D. Sun, Total Structure, Electronic Structure and Catalytic Hydrogenation Activity of Metal-Deficient Chiral Polyhydride Cu57 Nanoclusters, Angew. Chem. Int. Ed. 62, e202306849 (2023).
[3] Emily Conover, Debate heats up over claims that hot water sometimes freezes faster than cold, ScienceNews (2017).
[4] Bec Crew, The Claim Hot Water Freezes Faster Than Cold Water Is Even Weirder Than You Think, ScienceAlert (2017).
[8] Sofia Olea, Nueva teoría podría explicar por qué el agua caliente se congela más rápido (A new theory could explain why hot water freezes faster), El Ciudadano (2017).